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ABSTRACT

iPath3.0 (http://pathways.embl.de) is a web-
application for the visualization and analysis of
cellular pathways. It is freely available and open
to everyone. Currently it is based on four KEGG
global maps, which summarize up to 158 traditional
KEGG pathway maps, 192 KEGG modules and
other metabolic elements into one connected and
manually curated metabolic network. Users can fully
customize these networks and interactively explore
them through its redesigned, fast and lightweight
interface, which highlights general metabolic trends
in multi-omics data. It also offers navigation at vari-
ous levels of details to help users further investigate
those trends and ultimately uncover novel biological
insights. Support for multiple experimental condi-
tions and time-series datasets, tools for generation
of customization data, programmatic access, and a
free user accounts system were introduced in this
version to further streamline its workflow.

INTRODUCTION

Metabolic networks provide an intuitive and powerful
framework for understanding cellular systems. With the
availability of manually curated pathway diagrams of
metabolic networks and the ever increasing volume of omics
data to visualize, several tools (1–4) were developed to help
scientists explore and visually integrate these data onto
pathway diagrams. iPath (1,2), one of the first tools to pop-
ularize this concept online, proved useful in various con-
texts. For instance, it has been used to map differentially ex-
pressed functional transcripts between early and late plant
development (5), and metabolic pathways that differenti-

ate Crohn’s disease form healthy phenotypes in human gut
metaproteogenomic samples (6).

Here we present iPath3.0, the latest version of iPath,
which greatly improves the user experience by speeding up
the rendering of the maps and user interactions, by adding
two new global maps and by enriching its biological knowl-
edge base with 62 novel KEGG pathway modules (7), 1700
new reactions, 1500 new KEGG Orthology entries (KO)
and close to 3000 new species.

USER INTERFACE AND PATHWAY CUSTOMIZATION

iPath3.0’s pathway explorer provides zooming and panning
controls that allow the user to easily navigate the complex
pathway maps. Clicking on nodes and edges in the map dis-
plays popup windows with detailed information about the
associated data, such as enzymes, reactions, pathway maps
and compounds involved, each hyper-linked to the original
annotation source. With several built-in data mapping tools
and extensive customization options, users can upload vari-
ous types of data associated with enzymes or compounds to
customize any overview or species-specific pathways map.

IMPROVEMENTS AND NEW FEATURES

A major advance in iPath3.0 is its new display engine. Im-
plemented in Javascript and SVG, it greatly speeds up the
rendering of the maps, brings faster and lighter user inter-
actions, and therefore streamlines the whole user experience
compared to the previous Flash-based engine. The perfor-
mance of the search engine was greatly improved as well,
and the results extended to display the number of map el-
ements matched by each entry, and are emphasized upon
selection.

Mapping conflicts, which occur when multiple IDs with
different customization match the same element in the map,
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are now handled by a simple mechanism that allows the
user to choose one of the available customizations, which
not only helps in better exploring the maps but also reduces
the amount of complex image post-processing that might be
required for conveying a clear biological message.

In addition, support for time-series datasets was added
using animated map transitions where users can toggle
looping and control the transition speed and the color at
each time-point. Interestingly, this feature could also be
used for exploring differences in metabolic processes be-
tween two or more datasets, which is a common use case of
iPath. To further simplify this task, we integrated a new tool
to generate map customizations that reflect the intersection
and the complements of two sets of identifiers. Similarly, a
generator, based on numeric data, was also introduced to
produce customizations based on the correlation coefficient
or the average of two or more datasets.

Furthermore, a free user accounts system was imple-
mented for saving customizations and organizing them in
sharable workspaces and projects. This will help users keep-
ing track and documentation of their customizations, and
provide them instant restoration and switching between
customizations as well as easy sharing with collaborators
via shared links.

Finally, programmatic access to iPath3.0 is made avail-
able over HTTP to seamlessly integrate it into pipelines that
rely on its pathway visualization (8) and also to visualize
several customizations in one batch.

UNDERLYING DATA SET

iPath3.0 uses version 82.0 (15 May 2017) of KEGG,
which in addition to the updated global maps for ‘Global
metabolism’ and ‘Biosynthesis of secondary metabolites’,
now includes two new global maps: ‘Microbial metabolism
in diverse environments’ and ‘Biosynthesis of antibiotics’.
The former should benefit microbiome research as it is fo-
cused on microbial metabolism, as opposed to the broad
metabolic spectrum of the ‘Global metabolism’ map. Sim-
ilarly, the latter could help exploring the link between the
biosynthesis and the resistance to antibiotics. These global
maps consist of 158, 48, 42, 47 summarized pathways, and
192, 38, 71, 55 modules, respectively.

INPUT AND OUTPUT DATA

Input data for map customization is space delimited, where
the first element is a biological annotation followed by de-
sired user customization. For example, ‘M00001 #FF0000
W20’ will highlight the glycolysis module in red and enlarge
its edges to 20px. Supported KEGG annotations are path-
ways, modules, reactions, KOs, genes, compounds and EC
numbers. Uniprot (9) and STRING (10) protein IDs, COGs
(11), eggNOGs (12), NCBI (13) gene identifiers, ChEBI (14)
and PubChem (13) identifiers and eight additional chemi-
cal compounds databases are also supported to appeal to
a broader community of researchers. iPath also contains
species information (NCBI taxonomy ID or KEGG organ-
ism code), that allows users to display only customized ver-
sions of species-specific pathways.

Customized maps can also be exported for further edit-
ing and publication. Available export formats are Scalable
Vector Graphics (svg), Portable Network Graphics (png),
Encapsulated Postscript (eps) and Portable Document For-
mat (pdf).

ILLUSTRATIVE EXAMPLE

To illustrate new features of iPath3.0 we compared the
metabolic repertoire of Escherichia coli O157:H7 Xuzhou21
(ELX) and E. coli K-12 MDS42 (ECOK). We used the new
feature ‘Element selection based on ID overlap’ from the
tools section to customize the ‘Global metabolism’ map
based on their KOs. Reactions highlighted in blue (Figure
1) show that most enzymatic functions of these strains over-
lap, while those highlighted in brown are specific to ECOK
and in green specific to ELX. By displaying detailed infor-
mation about the ECOK-specific reaction highlighted in the
Pentose phosphate pathway (Figure 1), we found that the
both strains have the Ribose 5-phosphate isomerase (Rip)
required for this reaction however ECOK has both RipA
and RipB while ELX has only RipA. Using the conflict res-
olution tool (Figure 1) users could chose to color this match
in blue if the finding is not of interest to their research ques-
tion or keep it in brown to emphasis it. Resolving more con-
flicts is made easy by the ‘Selection match statistics’ panel
which lists all conflicts and highlights them upon selection.
Other hits were truly strain-specific as shown for K00480.

This example illustrates how iPath3.0 simplifies the navi-
gation and the comparison of metabolic pathways profiles,
but several other examples and video tutorials are also avail-
able in the online help section.

COMPARISON WITH OTHER TOOLS

KEGG Atlas (4) and Pathway projector (3) are web tools for
pathway exploration. Both offer map navigation through
zooming and panning, taxonomic filtering as well as lim-
ited map customizations. On top of these functionalities
iPath3.0 offers a wide array of additional features covered in
the previous section ‘Improvement and new features’, which
sets it apart from these tools as not only a pathway explorer,
but also an advanced visual analysis tool for metabolic data.

DISCUSSION

The new built-in color generation tools and the moderniza-
tion of the web interface of iPath3.0 greatly improve and
streamline the user experience. The addition of time-series
visualization and programmatic access opens novel explo-
ration perspectives. With all these improvements we hope
that iPath3.0 will help scientists to comprehensively explore
more cellular pathways with less effort and in a shorter time
span. Meanwhile we will continue improving iPath by pro-
viding users with additional live editing features, an inte-
grated viewer for traditional KEGG maps, and the possi-
bility to upload user defined global maps.
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Figure 1. Overlap and differences between the metabolic enzymes of Escherichia coli O157:H7 Xuzhou21 (green) and E. coli K-12 MDS42 (brown). The
panel on the left shows detailed information about the element matched by K00480. The panel in the middle displays customization match statistics in a
sortable and searchable table. Clicking the conflict number highlights (in pink) the elements associated with the conflict. The right panel shows details about
the Ribose 5-phosphate isomerase and gives an example of conflict resolution, where clicking on the select button will change the color of the highlighted
element to blue.
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